
In rats and mink, several acute studies of
polychlorinated biphenyls (PCBs) have asso-
ciated these compounds with hepatotoxicity
(Bergman et al. 1992; Bruckner et al. 1974;
Chu et al. 1994; Jonsson et al. 1981; Kelly
1993; Kimbrough et al. 1971; MacLachlan and
Cullen 1995; Parkinson 1996). Specifically
in the liver, acute organohalogen compound
(OHC) toxicity is mediated through sub-
cellular toxicity, leading to impaired ATP,
protein synthesis, and other changes (Kelly
1993; Parkinson 1996), and chronic exposure
also may affect endocrine homeostasis via up-
regulation of cytochrome P450 isozymes
(e.g., CYP1A and CYP1B) (Boon et al. 1992;
Lin et al. 2003; van Duursen et al. 2003;
Wong et al. 1992).

In marine wildlife, chronic exposure to
organohalogen compounds [OHCs; e.g.,
PCBs, dichlorodiphenyltrichloroethane
(DDT), and polybrominated diphenyl ethers
(PBDEs)] has been associated with toxic effects
on several organ systems (Bergman 1999;
Bergman and Olsson 1985; Bergman et al.
2001; Schumacher et al. 1993). However, his-
tologic liver changes associated with high
environmental levels of OHCs in wildlife have
been investigated only in birds, such as

cormorants (Phalacrocorax carbo) (Fabczak
et al. 2000), and fish, such as common bream
(Abramis brama) (Koponen et al. 2001), but
never in marine or terrestrial mammals.

Polar bears are the most OHC-contami-
nated species in the Arctic, and those from
East Greenland and Svalbard (Norway) carry
the most contaminants because of their
reliance on OHC-polluted blubber, mainly
from ringed seal (Phoca hispida) and bearded
seal (Erignathus barbatus), contaminanted by
OHCs originating from lower-latitude airborne
pollution [Arctic Monitoring and Assessment
Programme (AMAP) 2004; de March et al.
1998; Ramsay and Stirling 1988]. At Svalbard,
recent studies of PCBs and organochlorine
(OC) pesticides in polar bears have indicated
negative associations with plasma testosterone
(males), progesterone (females), cortisol (both
sexes), retinol (both sexes), and thyroxine hor-
mone (both sexes) (Braathen et al. 2004;
Haave et al. 2003; Oskam et al. 2003, 2004;
Skaare et al. 2001). Additionally, high levels of
PCBs/OC pesticides were associated with low
levels of IgG in the Svalbard bears, suggesting
possible immunotoxic effects (Bernhoft 
et al. 2000; Lie et al. 2004, 2005). In East
Greenland polar bears, OHCs are believed to

reduce bone mineral density (BMD) and to
be a cofactor in the development of renal
lesions and splenic changes (Kirkegaard et al.
2005; Sonne et al. 2004, in press). To deter-
mine if OHCs are also a cofactor in hepato-
toxicity, liver tissue histology was examined in
79 East Greenland polar bears sampled during
the subsistence hunt from 1999 to 2002, and
liver histology was compared with individual
OHC adipose tissue levels in 65 of the bears.
These new results are intended to fill part of
the existing knowledge gap in understanding
the significance, nature, and effects of chronic
environmental OHC exposure.

Materials and Methods

Sampling. All polar bear samples were col-
lected from January through September by
local subsistence hunters in the Scoresby
Sound area in central East Greenland
(69°00´N to 74°00´N) during 1999–2002. A
tissue subsample from the periphery of a ran-
domly chosen liver lobe was collected from
79 individuals and fixed in a phosphate-
buffered formaldehyde/alcohol solution (3.5%
formaldehyde, 86% ethanol, and 10.5%
H2O), which prevented freeze damage. In
addition, sternal subcutaneous adipose tissue
was sampled from 65 of the individuals for
OHC analyses and stored in separate poly-
ethylene plastic bags until arrival at the labora-
tory in Roskilde, where they were transferred
into rinsed [acetone (Supra solv. 1.00012),
n-hexane (Uni-solv 1.04369) both from
Merck, KGaA, Darmstadt, Germany] glass
containers, and covered with aluminum foil in
between the sample and the plastic lid. All
samples were taken < 12 hr postmortem and
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Do Organohalogen Contaminants Contribute to Histopathology in Liver from
East Greenland Polar Bears (Ursus maritimus)?

Christian Sonne,1,2 Rune Dietz,1 Pall S. Leifsson,3 Erik W. Born,4 Robert J. Letcher,5 Maja Kirkegaard,1

Derek C. G. Muir,6 Frank F. Riget,1 and Lars Hyldstrup7

1Department of Arctic Environment, National Environmental Research Institute, Roskilde, Denmark; 2Department of Veterinary Basic
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In East Greenland polar bears (Ursus maritimus), anthropogenic organohalogen compounds (OHCs)
(e.g., polychlorinated biphenyls, dichlorodiphenyltrichloroethane, and polybrominated diphenyl
ethers) contributed to renal lesions and are believed to reduce bone mineral density. Because OHCs
are also hepatotoxic, we investigated liver histology of 32 subadult, 24 adult female, and 23 adult male
East Greenland polar bears sampled during 1999–2002. Light microscopic changes consisted of
nuclear displacement from the normal central cytoplasmic location in parenchymal cells, mononuclear
cell infiltrations (mainly portally and as lipid granulomas), mild bile duct proliferation accompanied
by fibrosis, and fat accumulation in hepatocytes and pluripotent Ito cells. Lipid accumulation in Ito
cells and bile duct hyperplasia accompanied by portal fibrosis were correlated to age, whereas no
changes were associated with either sex or season (summer vs. winter). For adult females, hepatocytic
intracellular fat increased significantly with concentrations of the sum of hexachlorocyclohexanes, as
was the case for lipid granulomas and hexachlorobenzene in adult males. Based on these relationships
and the nature of the chronic inflammation, we suggest that these findings were caused by aging and
long-term exposure to OHCs. Therefore, these changes may be used as biomarkers for OHC exposure
in wildlife and humans. To our knowledge, this is the first time liver histology has been evaluated in
relation to OHC concentrations in a mammalian wildlife species, and the information is important to
future polar bear conservation strategies and health assessments of humans relying on OHC-contami-
nated food resources. Key words: bile duct proliferation, chlordanes, dichlorodiphenyltrichloroethane,
dieldrin, East Greenland, HCB, hexacyclohexanes, Ito cells, lipid granulomas, liver, mononuclear cell
infiltrations, polar bear, polybrominated diphenyl ethers, polychlorinated biphenyls, portal fibrosis,
∑DDT, ∑HCH, ∑PBDE, ∑PCB, Ursus maritimus. Environ Health Perspect 113:1569–1574 (2005).
doi:10.1289/ehp.8038 available via http://dx.doi.org/ [Online 5 July 2005]



preserved frozen during the hunt and later kept
at –20°C before preparation and examination
at the veterinary pathology laboratory in
Copenhagen, Denmark (histology); GLIER,
Windsor, Ontario, Canada (organochlorines);
and NWRI, Burlington, Ontario, Canada
(PBDEs).

Age estimation. The age determination was
carried out by counting the cementum growth
layer groups of the lower left incisor (I3) after
decalcification, thin sectioning (14 µm), and
staining (toluidine blue) using the method
described by Dietz et al. (1991) and Hensel
and Sorensen (1980). When necessary, the
individuals were categorized as adult males
(≥ 6 years of age), adult females (≥ 5 years of
age), and subadults (those remaining) (Rosing-
Asvid et al. 2002). In the evaluation of sex dif-
ference in the prevalence of histologic liver
changes, bears were categorized as old at
≥ 15 years of age based on Derocher and
Stirling (1994).

Histology. The liver tissue was trimmed,
processed conventionally, embedded in paraf-
fin, sectioned at about 4 µm, and stained
with hematoxylin (aluminum-hematein) and
eosin (H&E) and periodic acid-Schiff for
routine diagnostics; Van Gieson and Masson
Trichrome to detect fibrous tissue (collagen);
Best’s carmine to demonstrate glycogen stor-
age; Sudan III to detect lipid (frozen tissue);
and Perls’ Prussian blue reaction and Schmorl
technique for detecting hemosiderin and lipo-
fuscin pigments, respectively (Bancroft and
Stevens 1996; Lyon et al. 1991).

We evaluated six histologic changes and
grouped them semiquantitatively as follows:
• Portal mononuclear cell infiltrations: absent,

unifocally, multifocally, or diffuse
• Random mononuclear cell infiltrations:

absent, unifocally, multifocally, or diffuse
• Lipid granulomas: average number in five

fields at 10× magnification
• Hepatocytic intracellular fat: absent, foamy,

multifocal macrovesiculary, or diffuse
macrovesiculary

• Visible Ito cells: average number in five
fields at 20× magnification

• Mild multifocal bile duct hyperplasia accom-
panied by portal fibrosis: absent or present.

For each histologic change, the degree of
change was measured as follows:

• Portal mononuclear cell infiltrations: mild
(unifocally), moderate (multifocally), severe
(diffuse)

• Random cell infiltrations: mild (< 1), moder-
ate (1–3), severe (> 3)

• Lipid granulomas: mild (< 1), moderate (1 to
< 2), severe (2–5)

• Hepatocytic intracellular fat: mild (foamy),
moderate (multifocal macrovesiculary),
severe (diffuse macrovesiculary)

• Ito cells: mild (< 10), moderate (10 to < 50),
severe (50–200).

Analyses of OHCs. Polar bear subcutaneous
adipose tissue samples (n = 65) were analyzed
for PCBs, DDTs, chlordanes (CHLs), dieldrin,
hexacyclohexanes (HCHs), and hexachloro-
benzene (HCB) according to Dietz et al.
(2004) and Sandala et al. (2004) at the Great
Lakes Institute for Environmental Research
(University of Windsor, Windsor, Ontario,
Canada). An external standard quantification
approach used for PCBs and OC pesticides in
the subcutaneous adipose tissues was based on
peak area of the gas chromatography-electron
capture detection response, which is described
in detail by Luross et al. (2002).

Briefly, ∑PCB is the sum of the concentra-
tions of the 51 individual or coeluting PCB
congeners (if detected), given by International
Union of Pure and Applied Chemistry
(IUPAC) number: 31/28, 52, 49, 44, 42,
64/71, 74, 70, 66/95, 60, 101/84, 99, 97, 87,
110, 151, 149, 118, 146, 153, 105, 141, 179,
138, 158, 129/178, 182/187, 183, 128, 174,
177, 171/202/156, 200, 172, 180, 170/190,
201, 203/ 196, 195, 194, and 206. ∑DDT is
the sum of 4,4´-DDT, 4,4´-dichlorodiphenyl-
dichloroethane (DDD), and 4,4´-dichloro-
diphenyldichloroethylene (DDE). ∑HCH is
the sum of the α-, β-, and γ-hexachloro-
cyclohexane. ∑CHL is the sum of oxy-
chlordane, trans-chlordane, cis-chlordane,
trans-nonachlor, cis-nonachlor, and heptachlor
epoxide. OHC fractions were subsequently sent
to the National Water Research Institute for
determination of brominated diphenyl ether
(PBDE) flame retardants. PBDEs (n = 65)
were determined by electron capture negative
ion (low resolution) mass spectroscopy using
an external standard. Briefly, ∑PBDE is the
sum of the concentrations of the 35 individual
or coeluting congeners (if detected), given by

IUPAC number: 10, 7, 11, 8, 12/13, 15, 30,
32, 28/33, 35, 37, 75, 71, 66, 47, 49, 77, 100,
119, 99, 116, 85, 155/126, 105, 154, 153,
140, 138, 166, 183, 181, and 190. Gas chro-
matographic conditions for the PBDEs were as
described by Luross et al. (2002).

Statistics. The statistical analyses were per-
formed with SAS statistical software (version 8,
and Enterprise Guide, version 1; SAS Institute,
Cary, NC, USA); the level of significance was
set at p ≤ 0.05, and levels of significance at 0.05
< p ≤ 0.10 were considered a trend. The OHC
data were log-transformed (base e) before the
analyses in order to meet the assumption of
normality and homogeneity of the variance.

For each specific histologic liver change, we
performed a one-way analysis of variance
(ANOVA) to test for differences in mean age
between individuals with and without that
specific histologic liver change (Table 1). In
the case of hepatocytic lipid, we compared
foamy cytoplasm with macrovesicular lipid.
Furthermore, we tested whether there was a
relationship between sex or season (summer,
1 June through 30 September; winter,
1 October through 31 May), and histologic
liver changes using a chi-square test. In the case
of Ito cells and bile duct hyperplasia accom-
panied by portal fibrosis, we performed the chi-
square test within subadult, adult, and old bears
to determine age dependency. The chi-square
test was also used to test the relationship
between Ito cells and fatty granulomas.
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Table 1. Prevalence of histologic liver changes in relation to age, sex, and season in 79 East Greenland polar bears sampled during 1999–2002.

Degree of change [% (n)]
Histologic liver change Absent Mild Moderate Severe Age [(F )p] Sex [ (F )p] Season [(F )p]
Portal mononuclear cell infiltrations 82 (65) 8 (6) 8 (6) 2 (2) NS NS NS
Random mononuclear cell infiltrations 87 (69) 11 (9) 1 (1) 0 (0) NS NS NS
Hepatocytic intracellular fat 0 (0) 16 (13) 24 (19) 60 (47) NS NS NS
Lipid granulomas 24 (19) 35 (28) 32 (25) 9 (7) NS NS NS
Lipid accumulation in Ito cells 25 (20) 18 (14) 24 (19) 33 (26) (8)* NS NS
Mild bile duct hyperplasia with fibrosis 92 (73) 8 (6) 0 (0) 0 (0) (11)* NS NS

NS, not significant. Hepatic changes are divided into degrees of change (absent, mild, moderate, and severe); see “Materials and Methods” for criteria. 
*Individuals with histologic liver changes were significantly older (mean age) than individuals without histologic liver changes (p < 0.01).

Table 2. OHC concentrations (mean ± SD, ng/g lipid
weight) in subcutaneous adipose tissue of 65 East
Greenland polar bears investigated for histologic
liver changes during 1999–2001. 

Subadults Adult females Adult males
OHCs (n = 27) (n = 21) (n = 17)

∑PCB 6,130 ± 3,290 5,303 ± 2,157 7,081 ± 3,197
∑DDT 468 ± 240 380 ± 206 476 ± 259
∑CHL 1,518 ± 1,009 1,349 ± 559 1,016 ± 576*
Dieldrin 215 ± 114 179 ± 59** 172 ± 93#

∑HCH 184 ± 73 182 ± 155## 217 ± 144
HCB 114 ± 103 75 ± 68† 51 ± 32††

∑PBDE 57 ± 32 59 ± 36 51 ± 32

*Significant negative relationship with age (p < 0.01; R2 =
0.51). **Significantly negative relationship with age (p ≤ 0.05;
R2 = 0.26). #Significant negative relationship with age (p <
0.01; R2 = 0.45). ##Significantly negative relationship with age
(p ≤ 0.05; R2 = 0.25). †Significantly negative relationship with
age (p ≤ 0.05; R2 = 0.2). ††Significantly lower compared with
subadults (p ≤ 0.05).



We then performed a one-way ANOVA to
test for differences in mean concentrations of
each group of OHCs (PCBs, DDTs, CHLs,
dieldrin, HCHs, HCB, and PBDEs) between
subadults, adult females, and adult males
(Table 2). The results were then evaluated
from Tukey’s post hoc test. In order to test the
relationship between concentrations of OHCs
and age, we used a linear regression model for
subadults, adult females, and adult males.

Finally, we tested the relationship between
the concentrations of each group of OHCs
(PCBs, DDTs, CHLs, dieldrin, HCHs, HCB,
and PBDEs, respectively) and each histologic
liver change (absent vs. present) by an analysis
of covariance (Table 3). This was conducted
for each of the three age/sex groups using
OHC concentration as the dependent variable,
age as the covariable, and histologic liver
change as the class variable, including their
first-order interaction links (age × histologic
liver change). The statistical analyses were per-
formed separately on subadults, adult females,
and adult males in cases of CHLs, dieldrin,
HCHs, and HCB, because the age relation-
ships and/or concentrations differed among
these three age/sex groups. In the case of lipid
granulomas, the relationship to OHCs was
analyzed based on the presence or absence of
Ito cells. After a successive reduction of non-
significant interactions, judged from the
type III sum of squares (p ≤ 0.05), the signifi-
cance of each of the remaining factors was eval-
uated from the final model least-square mean.

Results

We studied a total of 79 free-ranging East
Greenland polar bears (24 subadults, 24 adult
females, 22 adult males, 4 old females, and

5 old males), collected from 1999 through
2002 (Table 1). No background data describ-
ing the general liver histology of free-ranging
polar bears were available in the scientific lit-
erature. The morphology of the liver tissue
was similar to other carnivorous species; how-
ever, interlobular fibrous septa were lacking as
in other ursid species (Frappier 1998; Heier
et al. 2003, in press; Kelly 1993; Leighton
et al. 1988; MacLachlan and Cullen 1995;
Prunescu et al. 2003). Kupffer cells, located in
the space of Disse, tested positive for hemo-
siderin (iron pigments) (Lyon et al. 1991), and
hepatocytes tested positive for deposits com-
patible with glycogen (Bancroft and Stevens
1996). In all individuals, parenchymal cells
exhibited nuclear displacement toward the cell
membrane (Figure 1) (Sato et al. 2001). 

Mononuclear cell infiltrations and lipid
granulomas. We found portal mononuclear
cell infiltrations (lymphocytes, macrophages,
and neutrophils), as described by Kelly (1993)
and MacLachlan and Cullen (1995), in 18%
of the animals and multifocally mononuclear
cell infiltrations in 12% of the bears examined
(Table 1, Figure 1). Additionally, we detected
lipid granulomas, also described by these
authors, in 76% of the animals. None of
these three cell infiltration types was related to
age, sex, or season (all, p > 0.05) (Table 1).
Finally, we found a trend of livers with visible
Ito cells showing a larger frequency of fatty
granulomas, compared with livers without
visible Ito cells (p < 0.06). 

In addition, we found one case of unifocal
necrosis and a single case of fibrin exudation,
described by Kelly (1993) and MacLachlan
and Cullen (1995), but we did not investigate
the significance further.

Lipids. All animals showed hepatocytic
microvesicular lipid accumulation (foamy
cytoplasm), and 84% showed sharply demar-
cated macrovesicular lipid vacuoles in mainly
periacinar (zones 2–3) hepatocytes (Table 1,
Figure 2). In addition, we found non-
parenchymal lipid vacuoles of diverging size
and numbers in centroacinary Ito cells—
located in the narrow space of Disse, between
hepatocytes—mainly periacinary (zones 2–3)
(Table 1, Figure 2) (Kelly 1993; Leighton
et al. 1988; MacLachlan and Cullen 1995;
Senoo et al. 1999, 2001). Intrahepatocytic
lipid accumulation was not related to age (p >
0.05), whereas Ito cell lipid accumulation was
highly related to age (p < 0.01) (Table 1).
None of the lipid changes was related to sex
or season (summer vs. winter) (Table 1).

Bile duct proliferation and portal fibrosis.
Mild bile duct proliferation accompanied by
portal fibrosis was found in 8% of the animals
(Table 1, Figure 3). These changes were asso-
ciated with age (both, p < 0.01); no relation-
ships were found to sex or season (Table 1).

OHCs and histologic changes. Levels of
∑PCB, ∑CHL, ∑DDT, dieldrin, ∑HCH,
HCB, and ∑PBDE in 65 of the examined
polar bears are presented in Table 2. ∑CHL,
∑PCB, ∑DDT, dieldrin, ∑HCH, and
∑PBDE did not differ significantly among
age/sex groups, but HCB was higher in
subadults when compared with adult males
(p ≤ 0.05) (Table 2). We found a significant
negative relationship between age and HCHs,
HCB, and dieldrin (all, p < 0.05) for adult
females, and between age and ∑CHL and
dieldrin in adult males (both, p < 0.01)
(Table 2). Further information about age and
sex variation of OHCs in the present East
Greenland polar bears has been published by
Dietz et al. (2004) and Sandala et al. (2004).

The statistical analyses were performed
separately on subadults, adult females, and
adult males in cases of ∑CHL, dieldrin,
∑HCH, and HCB because concentrations
and/or age relationships differed between the
three groups of individuals (Table 2). We
tested whether the concentrations of each

Liver changes in East Greenland polar bears
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Table 3. Significant results from analyses of relationships between histologic liver changes and OHCs in adult
female and male East Greenland polar bears, 1999–2001.

Age/sex group Histologic liver change OHCs (n, F, R 2)p

Adult females Hepatocytic intracellular fat ∑HCH (17, 8.5, 0.42)*
Adult males Lipid granulomas HCB (21, 9.8, 0.52)**

*Significantly higher OHC level (least square mean) in individuals with mild/moderate changes than in individuals without
changes (p ≤ 0.05). **Significantly higher OHC level (least-square mean) in individuals with mild/moderate changes than in
individuals without changes (p < 0.01).

Figure 1. Liver tissue stained with H&E showing portal mononuclear cell infiltration in a 3.5-year-old (subadult) female (A; 10×), random mononuclear cell infiltration
in a 20-year-old female (B; 20×), and lipid granulomas in a 16-year-old female (C; 40×) in liver tissue stained with H&E. Note the abnormal localization of the hepato-
cytic nuclei in (C). Bars = 50 µm.



OHC group differed between the degree of
histologic liver changes (absent vs. present);
for adult females we found a significant rela-
tionship between ∑HCH and hepatocytic
macrovesicular lipids (vacuoles), and for adult
males we found a significant relationship
between HCB and lipid granulomas (both,
p < 0.05) (Table 3).

Discussion

We found nuclear displacement toward the cell
membrane in all individuals. In studies of polar
bears from Svalbard, Sato et al. (2001) revealed
the same findings. It has been proposed that
this displacement is related to the high
vitamin A accumulation (natural storage) in Ito
cell cytoplasmic lipid droplets and hepatocytes,
accumulated through the extensive feeding on
blubber from ringed seal and bearded seal
(Käkelä et al. 1997; Ramsay and Stirling
1988). In general, such a displacement is asso-
ciated with hepatitis, carcinomas, hyperplasia
(adenomatous), or regeneration (Sato et al.
2001). However, such changes were not found
in the Svalbard study (Sato et al. 2001), and in
only two cases were unifocal hepatitis and
regeneration found in the present study. We
could not evaluate whether there was a relation
between nuclear displacement and OHCs or
hepatocytic lipid accumulation because we
found the displacement in nearly all individu-
als. Therefore, we hypothesize that displace-
ment may be a natural phenomenon in
free-ranging polar bears, probably related to vit-
amin A intake and/or a result of lipid/OHCs
accumulation (cytoskeletal displacement).

Mononuclear cell infiltrations and lipid
granulomas. Mononuclear cell infiltrates—
accompanied by fibrosis—is a reaction to local
depositioning of microorganisms and/or injury
of local blood vessels from, for example, toxic
compounds (Kelly 1993; MacLachlan and
Cullen 1995). These cell infiltrates are there-
fore a nonspecific inflammatory reaction that
can be linked to even minor tissue damage
(Kelly 1993; MacLachlan and Cullen 1995).
The fact that liver tissue, rich in visible Ito

cells, had a higher number of lipid granulomas
indicates that microorganisms (originating
from the blood supply) play a role in the ran-
dom multifocal necrosis (rupture of Ito cells)
observed (Kelly 1993; MacLachlan and Cullen
1995). However, if the lipophilic toxic OHCs
accumulate in the lipid rich Ito cells, we
hypothesize that OHCs may play a role in the
burst of Ito cells, as well.

Lipids. In the present study, we found
macrovesicular lipid in periacinar hepatocytes.
Because polar bears are hyperphagic from
April to July, they build up their fat deposits
during this period (Messier et al. 1992;
Ramsay and Stirling 1988), and a seasonal
pattern in Ito cell numbers may be expected as
was the case for the fatty tissue lipid percent-
age (Dietz et al. 2004). Intrahepatocytic accu-
mulated lipid vacuoles showed a zonary
pattern similar to that found in individuals
exposed to toxic substances, which produce a
characteristic periacinar injury due to the low
oxygen gradient (hypoxia and high concen-
trations of, for example, cytochrome P450).
This could sensitize the liver parenchyma in
this zone to metabolic disorders, resulting in
lipid accumulation (Kelly 1993; MacLachlan
and Cullen 1995; Parkinson 1996).

We also found lipid accumulation in peri-
acinary Ito cells. In polar bears, the Ito cells
are one of the major accumulation and storage
sites for lipophilic vitamin A (Leighton et al.
1988; Senoo et al. 1999, 2001) and probably
also lipophilic OHCs, as mentioned above. As
for hepatocytic lipid accumulation, we did not
find a seasonal pattern in the number of Ito
cells, but we did find that the number of Ito
cells is related to age. If the Ito cell number
reflects the vitamin A exposure through
marine prey species, mainly ringed seal and
bearded seal (Ramsay and Stirling 1988),
young bears would have lower numbers of Ito
cells because they do not start eating prey rich
in vitamin A until they are weaned at approxi-
mately 2 years of age (Derocher and Stirling
1994). This may then explain the age differ-
ence in the number of Ito cells in the liver.

Bile duct proliferation and portal fibrosis.
Bile duct proliferation has been associated with
toxic injury, parasitism, or periductular fibrosis
in terrestrial animals (Kelly 1993; MacLachlan
and Cullen 1995) and is therefore a non-
specific reaction to chronic extrinsic and/or
environmental factors. Specifically in arctic
mammals, bile duct proliferations have been
reported in arctic beluga whale (Delphinapterus
leucas), but the pathogenesis of this could not
be determined (Woshner et al. 2002).

Age-related portal fibrosis, due to chronic
infections (cholangitis and biliary obstruction),
is a common nonspecific histologic diagnosis
in mammals (Kelly 1993; MacLachlan and
Cullen 1995), and it has been reported in the
Romanian brown bear (Ursus arctos) (Prunescu
et al. 2003) and arctic beluga whale (Woshner
et al. 2002). Prunescu et al. (2003) showed
seasonal liver fibrosis (highest in spring) of the
hepatic venous system, possibly due to pre-
hibernation physiologic adaptations. Our find-
ings were not in agreement with such a
seasonal fibrosis pattern, however, because
portal fibrosis was present with bile duct
proliferations in all individuals.

Liver changes and OHCs. To our knowl-
edge, liver histology in relation to environ-
mental levels of OHCs has been studied only
in birds, such as cormorants (Fabczak et al.
2000), and fish, such as common bream
(Koponen et al. 2001), but never in marine or
terrestrial mammals. Therefore, it is difficult
to evaluate the relationship between liver his-
tology and chronic exposure to environmental
levels of OHCs in the East Greenland polar
bear because basic knowledge in this field is
extremely sparse.

Mononuclear cell infiltrates (lymphocytes
and neutrophils) randomly distributed (lipid
granulomas) or portally (around triads) have
been associated with subacute PCB exposure in
mink (Mustela vison) (Bergman et al. 1992).
We found the same pattern in polar bears,
which supports the hypothesis that OHCs
could be a cofactor in the liver changes of the
East Greenland polar bears in the present
study. However, this could also be a result of
microorganisms. Although the results from the
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Figure 2. Lipid accumulation in liver tissue stained with H&E. (A) Zone 2–3 hepatocytic macrovesicular lipid
(vacuoles; 2.5×) in a 4-year-old (subadult) female; inset, taken from (A; 10×). (B) Ito cell lipid accumulation in a
20-year-old female; 10×. Bars = 25 µm.

Figure 3. Mild bile duct proliferation accompanied
by portal fibrosis (H&E; 20×). Bar = 50 µm.



laboratory studies are nonspecific reactions,
parallels to our results are obvious.

Hepatotoxic substances (e.g., copper,
pyrrolizidine alkaloids, carbon tetrachloride,
and phytotoxins) usually produce a periacinar
zone 2–3 injury due to the low oxygen gradient
(hypoxia) and high concentrations of, for exam-
ple, cytochrome P450 isozymes (activation of
reactive metabolites) of this zone (Kelly 1993;
MacLachlan and Cullen 1995; Parkinson
1996). We found such a zonary appearance in
hepatocytic accumulation in the polar bears in
the present study. Abnormal amounts of fat
are known to be accumulated in the liver dur-
ing high lipid ingestion, starvation, abnormal
hepatocytic function, excessive dietary intake
of carbohydrates, and decreased synthesis of -
apoproteins (lipoproteins) (Kelly 1993;
MacLachlan and Cullen 1995; Parkinson
1996). Hence, the large content of lipids in
polar bear livers could be a function of hyper-
phagia and starvation due to seasonal changes
in food resources, as discussed above, although
we did not find a seasonal pattern. However,
acute toxic investigations of PCBs, DDTs, and
dieldrin in laboratory rats have shown to induce
high lipid accumulation—probably due to
decreased production of lipoproteins through
impaired ATP synthesis and protein synthe-
sis—in periacinary hepatocytes (accumulated as
foamy cytoplasm or large vacuoles) (Bergman
et al. 1992; Bruckner et al. 1974; Kelly 1993;
Kimbrough et al. 1971, 1972; MacLachlan and
Cullen 1995; Parkinson 1996). Therefore,
OHCs may be a cofactor in the development of
lipid accumulation in the present study,
although significant differences in OHC con-
centrations were not found.

The signs of chronic inflammation, also in
relation to Glisson’s triads (bile duct prolifera-
tion accompanied by portal fibrosis), as well as
the hepatocytic lipid accumulation, could pos-
sibly indicate long-term exposure to liver toxic
substances (OHCs) in the East Greenland
polar bear, as well. However, other than the
OHC considerations and age, liver histology
in free-ranging Atlantic bottlenose dolphin
(Tursiops truncatus) (Rawson et al. 1993) and
arctic beluga whale (Woshner et al. 2002), in
relation to mercury exposure, have shown
changes similar to those in the present study.
The East Greenland polar bears in the present
study have also accumulated considerable
amounts of mercury in the liver tissue
(2.13–13.4 µg/g wet weight) (Dietz et al.
1990, 2000), which are in the range of adverse
toxic effect levels for terrestrial mammals
(Thompson 1996).

Conclusions

In the present study, we found the following
histologic changes in liver tissue from 79 East
Greenland polar bears: nuclear displacement,
mononuclear cell infiltrations, mild bile duct

proliferation accompanied by portal fibrosis,
and fat accumulation. Two of the changes (Ito
cells and bile duct hyperplasia accompanied by
portal fibrosis) were related to age, whereas
none were related to sex or season. The signs
and type of chronic inflammation, and the
zonary lipid accumulation in hepatocytes, may
indicate chronic exposure to environmental
levels of OHCs. In addition, we found signifi-
cant relationships for ∑HCH and hepatocytic
lipid accumulation in adult females and
between HCB and lipid granulomas in adult
males. We therefore suggest that the histologic
changes were a result of aging and long-term
exposure to OHCs, but other environmental
factors, such as microorganisms and mercury,
cannot be excluded.
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